Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1

نویسندگان

  • U Lorenz
  • A D Bergemann
  • H N Steinberg
  • J G Flanagan
  • X Li
  • S J Galli
  • B G Neel
چکیده

Receptor protein tyrosine kinases (RTKs) transmit downstream signals via interactions with secondary signaling molecules containing SH2 domains. Although many SH2-phosphotyrosyl interactions have been defined in vitro, little is known about the physiological significance of specific RTK/SH2 interactions in vivo. Also, little is known about the mechanisms by which specific RTKs interact with and/or are regulated by specific protein tyrosine phosphatases (PTPs). To address such issue, we carried out a genetic analysis of the previously reported biochemical interaction between the RTK c-Kit, encoded at the W locus, and the SH2-containing non-transmembrane PTP SHP1, encoded at the motheaten (me) locus (1). Mice carrying a kinase-defective allele of c-Kit (Wv/+) were crossed with me/+ mice, which carry one effectively null allele of SHP1, and then backcrossed to generate all possible allelic combinations. Our results indicate strong intergenic complementation between these loci in hematopoietic progenitor cells. Compared to progenitors purified from normal mice, bone marrow progenitor cells (lin-) from me/me mice markedly hyper-proliferated in response to Kit ligand (KL). stimulation. Superimposition of the me/me genotype increased the number of one marrow-derived CFU-E from Wv/+ mice. Conversely, the presence of one or two copies of Wv decreased the number of macrophages and granulocytes in me/me lung, skin, peripheral blood and bone marrow, thereby decreasing the severity of the me/me phenotype. The decrease in dermal mast cells in Wv/Wv mice was rescued to levels found in Wv/+mice by superimposition of the me/me genotype. Surprisingly, however, the presence or absence of SHP1 had no effect on the proliferative response of bone marrow-derived cultured mast cells to KL or IL3 ex vivo. Nevertheless, the immediate-early response to KL stimulation, as measured by KL-induced tyrosyl phosphorylation, was substantially increased in mast cells from Wv/+:me/me compared to Wv/ +:+/+ mice, strongly suggesting that SHP1 directly dephosphorylates and regulates c-Kit. Taken together, our results establish that SHP1 negatively regulates signaling from c-Kit in vivo, but in a cell type-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-Acetylcysteine Compared to Metformin, Improves The Expression Profile of Growth Differentiation Factor-9 and Receptor Tyrosine Kinase c-Kit in The Oocytes of Patients with Polycystic Ovarian Syndrome

Objective Paracrine disruption of growth factors in women with polycystic ovarian syndrome results in production of low quality oocyte, especially following ovulation induction. The aim of this study was to investigate the effects of metformin (MET), N-acetylcysteine (NAC) and their combination on the hormonal levels and expression profile of GDF-9, BMP-15 and c-Kit, as hallmarks of oocyte qual...

متن کامل

Receptor Tyrosine Kinase Inhibitory Activities and Molecular Docking Studies of Some Pyrrolo[2,3-d]pyrimidine Derivatives

In this study, we aimed to determine VEGFR-2, EGFR and PDGFR-β tyrosine kinase inhibitory activities of some pyrrolo[2,3-d]pyrimidine derivatives previously synthesized and showed potent cytotoxic and apoptotic effects against several cancer cell lines by our group and to evaluate the relationships between inhibitory activities and binding properties of the active compounds by molecular docking...

متن کامل

Lack of Association between PTPN22 (+1858 C>T) rs2476601 polymorphism and susceptibility to rheumatoid arthritis (RA) in Northeast of Iran

Background and objectives: Rheumatoid arthritis (RA) is an autoimmune disease with a complex genetic background. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a lymphoid specific protein tyrosine phosphatase which is involved in negative regulation of T cell response. Several studies have assessed the association between PTPN22 single nucleotide polymorphisms (SNPs) with RA ...

متن کامل

Signaling and Regulation Breast Cancer Cells Proliferation Is Regulated by Tyrosine Phosphatase SHP1 through c-jun N-Terminal Kinase and Cooperative Induction of RFX-1 and AP-4 Transcription Factors

In this study, we show that proliferation of breast cancer cells is suppressed by IGF-1–activated JNK MAPK pathway. The molecular mechanism by which c-jun-NH,-kinase (JNK) activation induces antiproliferative signals in IGF-1–stimulated breast cancer cells remains unknown. Tyrosine phosphatase SHP1 is known to negatively regulate signal transduction pathways activated by cell surface receptors ...

متن کامل

Breast cancer cells proliferation is regulated by tyrosine phosphatase SHP1 through c-jun N-terminal kinase and cooperative induction of RFX-1 and AP-4 transcription factors.

In this study, we show that proliferation of breast cancer cells is suppressed by IGF-1-activated JNK MAPK pathway. The molecular mechanism by which c-jun-NH,-kinase (JNK) activation induces antiproliferative signals in IGF-1-stimulated breast cancer cells remains unknown. Tyrosine phosphatase SHP1 is known to negatively regulate signal transduction pathways activated by cell surface receptors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 184  شماره 

صفحات  -

تاریخ انتشار 1996